Improved feature extraction using structured Fisher discrimination sparse coding scheme for machinery fault diagnosis
نویسندگان
چکیده
منابع مشابه
SparseCodePicking: feature extraction in mass spectrometry using sparse coding algorithms
Mass spectrometry (MS) is an important technique for chemical profiling which calculates for a sample a high dimensional histogram-like spectrum. A crucial step of MS data processing is the peak picking which selects peaks containing information about molecules with high concentrations which are of interest in an MS investigation. We present a new procedure of the peak picking based on a sparse...
متن کاملFeature Extraction and Selection for Automatic Fault Diagnosis of Rotating Machinery
In this work we present three feature extraction models used in vibratory data from rotating machinery for bearing fault diagnosis. Vibrations signals are acquired by accelerometers which are then submitted to different feature extraction modules. Our tests suggest that pooling heterogeneous feature sets achieve better results than using a single extraction model. Besides, different classifiers...
متن کاملFeature Extraction Techniques of Non-Stationary Signals for Fault Diagnosis in Machinery Systems
Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant speed variations (e.g., wind turbine ...
متن کاملA Feature Extraction Method Based on Information Theory for Fault Diagnosis of Reciprocating Machinery
This paper proposes a feature extraction method based on information theory for fault diagnosis of reciprocating machinery. A method to obtain symptom parameter waves is defined in the time domain using the vibration signals, and an information wave is presented based on information theory, using the symptom parameter waves. A new way to determine the difference spectrum of envelope information...
متن کاملAn improved wrapper-based feature selection method for machinery fault diagnosis
A major issue of machinery fault diagnosis using vibration signals is that it is over-reliant on personnel knowledge and experience in interpreting the signal. Thus, machine learning has been adapted for machinery fault diagnosis. The quantity and quality of the input features, however, influence the fault classification performance. Feature selection plays a vital role in selecting the most re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mechanical Engineering
سال: 2016
ISSN: 1687-8140,1687-8140
DOI: 10.1177/1687814016683085